Workflow Element Store

  1. Unstructured data (Audio)
  2. Unstructured data (Images / Videos)
  3. Mobile Applications or IoT Applications
  4. Data Generation
  5. Public Datasets
  6. APIs and Data Feeds
  7. Data Collaboration and Partnerships
  8. Data Logging
  9. Crowdsourcing
  10. Surveys and Questionnaires
  11. Data Pre-existing
  12. WebScraping
  13. Structured Data (Tabular)
  1. S3
  2. MySQL
  3. Azure blob storage
  4. Oracle DB
  5. Informatica
  6. GCP BigQuery
  7. PostgreSQL
  8. AWS Redshift
  9. NoSQL DB
  10. GCS
  11. MS SQL server
  12. RDBMS
  13. Azure Data Warehouse
  1. Time-Based Features
  2. Handling Categorical Data
  3. Handling Noisy Data
  4. Auto-Preprocessing libraries
  5. Feature Extraction from Images
  6. Data Scaling and Normalization
  7. Dimensionality Reduction
  8. Dealing with Outliers
  9. Feature Selection
  10. Data Scaling and Normalization
  11. Encoding Categorical Variables
  12. Binning
  13. Handling Time-Series Data
  14. Handling Missing Data
  15. Domain-Specific Feature Engineering
  16. Polynomial Features
  17. AutoEDA libraries
  18. Logarithmic Transform
  19. Interaction Features
  20. Dimensionality Reduction
  21. Textual Feature Extraction
  22. Handling Imbalanced Classes
  1. Blackbox Techniques
  2. Time Series Anaysis
  3. Ensemble Techniques
  4. Supervised Learning-Regression
  5. Supervised Learning-multiclass classification
  6. Train-Test Split
  7. Data Partitioning
  8. Forecasting
  9. Supervised Learning-binary classification
  10. Unsupervised Learning
  1. Regular Monitoring and Logging
  2. Train-Test Split
  3. Data Partition-sequential
  4. Batch Size Selection
  5. Batch Normalization
  6. Data Augmentation
  7. Ensemble Methods
  8. Hyperparameter Tuning
  9. Transfer Learning
  10. Cross-Validation
  11. Weight Initialization
  12. Regularization
  13. Early Stopping
  14. Learning Rate Scheduling
  15. Gradient Clipping
  1. Model Comparison
  2. Performance Visualization
  3. Cross-Validation
  4. Hyperparameter Tuning
  5. Data Partitioning
  6. Train-Test Split
  7. Evaluation Metrics
  8. Regularization Techniques
  9. External Validation
  10. Model Interpretability
  1. Error Analysis
  2. Bias and Fairness Assessment
  3. Model Monitoring and Maintenance
  4. A/B Testing
  5. Continuous Integration and Deployment (CI/CD)
  6. Cloud Deployment
  7. Feedback Collection
  8. Streamlit
  9. Model Versioning
  10. Security Considerations
  11. Edge Deployment
  12. Documentation and API Documentation
  13. Model Drift
  14. Containerization
  15. Model Serialization
  16. Monitoring and Logging
  17. Alerting and Notification
  18. Web APIs - Flask, FastAPI, etc.
  19. Performance Metrics
  20. Model Health Monitoring
  21. Data Drift Monitoring
  22. Serverless Computing
  23. Prediction Logging
  24. Model Registry
  25. Model Retraining and Updating
  26. Concept Drift Detection
  27. Documentation and Reporting
  1. Mobile
  2. End User Machine
ML Workflow Beginner - Architecture
  • Element belongs to model
  • Element not belongs to model
Feature Store

Feature Store
(Online / Offline)

Data Sources

Data Sources

Data Warehouse

Data Warehouse/ Data Lake

Data Pre Processing & Feature Engineering

EDA, Data Pre Processing & Feature Engineering

Model Selection

Model Selection

Model Training & Hyper Parameter Tuning

Model Training & Hyper Parameter Tuning

Model Evaluation

Model Evaluation

Model Deployment

Model Deployment

End User Device

End User Device

Model Registry

Model Registry