Workflow Element Store

  1. Data Pre-existing
  2. Crowdsourcing
  3. Unstructured data (Audio)
  4. Unstructured data (Images / Videos)
  5. Public Datasets
  6. Mobile Applications or IoT Applications
  7. Data Collaboration and Partnerships
  8. APIs and Data Feeds
  9. Data Generation
  10. WebScraping
  11. Data Logging
  12. Structured Data (Tabular)
  13. Surveys and Questionnaires
  1. Azure Data Warehouse
  2. AWS Redshift
  3. Informatica
  4. S3
  5. MS SQL server
  6. PostgreSQL
  7. GCS
  8. RDBMS
  9. GCP BigQuery
  10. MySQL
  11. Oracle DB
  12. Azure blob storage
  13. NoSQL DB
  1. Auto-Preprocessing libraries
  2. Feature Selection
  3. Textual Feature Extraction
  4. Handling Imbalanced Classes
  5. Binning
  6. Handling Time-Series Data
  7. Dealing with Outliers
  8. Logarithmic Transform
  9. Dimensionality Reduction
  10. AutoEDA libraries
  11. Polynomial Features
  12. Encoding Categorical Variables
  13. Feature Extraction from Images
  14. Handling Categorical Data
  15. Domain-Specific Feature Engineering
  16. Interaction Features
  17. Time-Based Features
  18. Dimensionality Reduction
  19. Handling Noisy Data
  20. Handling Missing Data
  21. Data Scaling and Normalization
  22. Data Scaling and Normalization
  1. Data Partitioning
  2. Train-Test Split
  3. Supervised Learning-multiclass classification
  4. Blackbox Techniques
  5. Forecasting
  6. Unsupervised Learning
  7. Ensemble Techniques
  8. Supervised Learning-Regression
  9. Supervised Learning-binary classification
  10. Time Series Anaysis
  1. Regularization
  2. Data Augmentation
  3. Transfer Learning
  4. Train-Test Split
  5. Data Partition-sequential
  6. Early Stopping
  7. Weight Initialization
  8. Cross-Validation
  9. Batch Size Selection
  10. Gradient Clipping
  11. Ensemble Methods
  12. Batch Normalization
  13. Learning Rate Scheduling
  14. Regular Monitoring and Logging
  15. Hyperparameter Tuning
  1. Hyperparameter Tuning
  2. External Validation
  3. Regularization Techniques
  4. Model Interpretability
  5. Performance Visualization
  6. Model Comparison
  7. Train-Test Split
  8. Cross-Validation
  9. Data Partitioning
  10. Evaluation Metrics
  1. Serverless Computing
  2. Documentation and Reporting
  3. Prediction Logging
  4. Documentation and API Documentation
  5. Model Health Monitoring
  6. Feedback Collection
  7. Model Retraining and Updating
  8. Model Monitoring and Maintenance
  9. A/B Testing
  10. Security Considerations
  11. Error Analysis
  12. Data Drift Monitoring
  13. Edge Deployment
  14. Alerting and Notification
  15. Performance Metrics
  16. Bias and Fairness Assessment
  17. Streamlit
  18. Web APIs - Flask, FastAPI, etc.
  19. Concept Drift Detection
  20. Model Serialization
  21. Continuous Integration and Deployment (CI/CD)
  22. Model Drift
  23. Model Versioning
  24. Model Registry
  25. Monitoring and Logging
  26. Containerization
  27. Cloud Deployment
  1. End User Machine
  2. Mobile
ML Workflow Beginner - Architecture
  • Element belongs to model
  • Element not belongs to model
Feature Store

Feature Store
(Online / Offline)

Data Sources

Data Sources

Data Warehouse

Data Warehouse/ Data Lake

Data Pre Processing & Feature Engineering

EDA, Data Pre Processing & Feature Engineering

Model Selection

Model Selection

Model Training & Hyper Parameter Tuning

Model Training & Hyper Parameter Tuning

Model Evaluation

Model Evaluation

Model Deployment

Model Deployment

End User Device

End User Device

Model Registry

Model Registry