Workflow Element Store

  1. Data Logging
  2. Crowdsourcing
  3. Unstructured data (Images / Videos)
  4. Data Pre-existing
  5. Data Generation
  6. Surveys and Questionnaires
  7. Public Datasets
  8. APIs and Data Feeds
  9. Unstructured data (Audio)
  10. WebScraping
  11. Structured Data (Tabular)
  12. Data Collaboration and Partnerships
  13. Mobile Applications or IoT Applications
  1. Oracle DB
  2. MS SQL server
  3. Azure blob storage
  4. AWS Redshift
  5. GCP BigQuery
  6. Azure Data Warehouse
  7. MySQL
  8. GCS
  9. S3
  10. NoSQL DB
  11. RDBMS
  12. PostgreSQL
  13. Informatica
  1. Time-Based Features
  2. Logarithmic Transform
  3. Auto-Preprocessing libraries
  4. Dealing with Outliers
  5. Handling Missing Data
  6. Interaction Features
  7. Handling Categorical Data
  8. Textual Feature Extraction
  9. Handling Noisy Data
  10. Dimensionality Reduction
  11. Binning
  12. Handling Imbalanced Classes
  13. Handling Time-Series Data
  14. Feature Extraction from Images
  15. Polynomial Features
  16. Data Scaling and Normalization
  17. Dimensionality Reduction
  18. AutoEDA libraries
  19. Feature Selection
  20. Domain-Specific Feature Engineering
  21. Encoding Categorical Variables
  22. Data Scaling and Normalization
  1. Forecasting
  2. Ensemble Techniques
  3. Data Partitioning
  4. Supervised Learning-Regression
  5. Supervised Learning-multiclass classification
  6. Time Series Anaysis
  7. Blackbox Techniques
  8. Unsupervised Learning
  9. Supervised Learning-binary classification
  10. Train-Test Split
  1. Train-Test Split
  2. Batch Normalization
  3. Ensemble Methods
  4. Learning Rate Scheduling
  5. Early Stopping
  6. Data Augmentation
  7. Batch Size Selection
  8. Transfer Learning
  9. Cross-Validation
  10. Regular Monitoring and Logging
  11. Hyperparameter Tuning
  12. Regularization
  13. Data Partition-sequential
  14. Weight Initialization
  15. Gradient Clipping
  1. Model Comparison
  2. Hyperparameter Tuning
  3. Regularization Techniques
  4. Data Partitioning
  5. Train-Test Split
  6. External Validation
  7. Cross-Validation
  8. Performance Visualization
  9. Evaluation Metrics
  10. Model Interpretability
  1. Data Drift Monitoring
  2. Model Versioning
  3. Feedback Collection
  4. Monitoring and Logging
  5. Continuous Integration and Deployment (CI/CD)
  6. Cloud Deployment
  7. Documentation and API Documentation
  8. Model Retraining and Updating
  9. Containerization
  10. Edge Deployment
  11. Model Serialization
  12. Error Analysis
  13. Security Considerations
  14. Model Drift
  15. Concept Drift Detection
  16. Streamlit
  17. Model Registry
  18. Web APIs - Flask, FastAPI, etc.
  19. Prediction Logging
  20. Bias and Fairness Assessment
  21. Performance Metrics
  22. Documentation and Reporting
  23. Model Health Monitoring
  24. Model Monitoring and Maintenance
  25. Serverless Computing
  26. Alerting and Notification
  27. A/B Testing
  1. End User Machine
  2. Mobile
ML Workflow Beginner - Architecture
  • Element belongs to model
  • Element not belongs to model
Feature Store

Feature Store
(Online / Offline)

Data Sources

Data Sources

Data Warehouse

Data Warehouse/ Data Lake

Data Pre Processing & Feature Engineering

EDA, Data Pre Processing & Feature Engineering

Model Selection

Model Selection

Model Training & Hyper Parameter Tuning

Model Training & Hyper Parameter Tuning

Model Evaluation

Model Evaluation

Model Deployment

Model Deployment

End User Device

End User Device

Model Registry

Model Registry