Workflow Element Store

  1. Mobile Applications or IoT Applications
  2. Data Pre-existing
  3. Data Generation
  4. Data Logging
  5. WebScraping
  6. Unstructured data (Images / Videos)
  7. Crowdsourcing
  8. Unstructured data (Audio)
  9. APIs and Data Feeds
  10. Public Datasets
  11. Structured Data (Tabular)
  12. Data Collaboration and Partnerships
  13. Surveys and Questionnaires
  1. RDBMS
  2. Informatica
  3. GCP BigQuery
  4. S3
  5. MS SQL server
  6. GCS
  7. Azure Data Warehouse
  8. Oracle DB
  9. PostgreSQL
  10. Azure blob storage
  11. AWS Redshift
  12. NoSQL DB
  13. MySQL
  1. Domain-Specific Feature Engineering
  2. Handling Categorical Data
  3. Feature Selection
  4. Handling Noisy Data
  5. Dealing with Outliers
  6. Logarithmic Transform
  7. Textual Feature Extraction
  8. Data Scaling and Normalization
  9. Handling Imbalanced Classes
  10. Feature Extraction from Images
  11. Data Scaling and Normalization
  12. Binning
  13. Interaction Features
  14. Encoding Categorical Variables
  15. Auto-Preprocessing libraries
  16. Polynomial Features
  17. Handling Time-Series Data
  18. Dimensionality Reduction
  19. Handling Missing Data
  20. Dimensionality Reduction
  21. AutoEDA libraries
  22. Time-Based Features
  1. Unsupervised Learning
  2. Train-Test Split
  3. Forecasting
  4. Supervised Learning-Regression
  5. Supervised Learning-multiclass classification
  6. Ensemble Techniques
  7. Supervised Learning-binary classification
  8. Blackbox Techniques
  9. Time Series Anaysis
  10. Data Partitioning
  1. Data Partition-sequential
  2. Data Augmentation
  3. Weight Initialization
  4. Batch Size Selection
  5. Hyperparameter Tuning
  6. Transfer Learning
  7. Train-Test Split
  8. Ensemble Methods
  9. Regularization
  10. Batch Normalization
  11. Gradient Clipping
  12. Early Stopping
  13. Regular Monitoring and Logging
  14. Learning Rate Scheduling
  15. Cross-Validation
  1. Train-Test Split
  2. Cross-Validation
  3. Evaluation Metrics
  4. External Validation
  5. Data Partitioning
  6. Model Comparison
  7. Hyperparameter Tuning
  8. Performance Visualization
  9. Regularization Techniques
  10. Model Interpretability
  1. Containerization
  2. Model Health Monitoring
  3. Security Considerations
  4. Model Drift
  5. Serverless Computing
  6. Prediction Logging
  7. Model Registry
  8. Edge Deployment
  9. A/B Testing
  10. Bias and Fairness Assessment
  11. Alerting and Notification
  12. Documentation and API Documentation
  13. Cloud Deployment
  14. Error Analysis
  15. Feedback Collection
  16. Continuous Integration and Deployment (CI/CD)
  17. Model Serialization
  18. Data Drift Monitoring
  19. Monitoring and Logging
  20. Web APIs - Flask, FastAPI, etc.
  21. Model Monitoring and Maintenance
  22. Model Versioning
  23. Performance Metrics
  24. Streamlit
  25. Concept Drift Detection
  26. Documentation and Reporting
  27. Model Retraining and Updating
  1. Mobile
  2. End User Machine
ML Workflow Beginner - Architecture
  • Element belongs to model
  • Element not belongs to model
Feature Store

Feature Store
(Online / Offline)

Data Sources

Data Sources

Data Warehouse

Data Warehouse/ Data Lake

Data Pre Processing & Feature Engineering

EDA, Data Pre Processing & Feature Engineering

Model Selection

Model Selection

Model Training & Hyper Parameter Tuning

Model Training & Hyper Parameter Tuning

Model Evaluation

Model Evaluation

Model Deployment

Model Deployment

End User Device

End User Device

Model Registry

Model Registry