Workflow Element Store

  1. Structured Data (Tabular)
  2. Data Generation
  3. Data Collaboration and Partnerships
  4. Unstructured data (Images / Videos)
  5. Surveys and Questionnaires
  6. Data Logging
  7. APIs and Data Feeds
  8. Unstructured data (Audio)
  9. Mobile Applications or IoT Applications
  10. Crowdsourcing
  11. Data Pre-existing
  12. WebScraping
  13. Public Datasets
  1. MySQL
  2. Oracle DB
  3. GCS
  4. Azure blob storage
  5. PostgreSQL
  6. MS SQL server
  7. Informatica
  8. GCP BigQuery
  9. RDBMS
  10. Azure Data Warehouse
  11. S3
  12. NoSQL DB
  13. AWS Redshift
  1. Time-Based Features
  2. Textual Feature Extraction
  3. Handling Noisy Data
  4. Binning
  5. Dealing with Outliers
  6. Handling Missing Data
  7. AutoEDA libraries
  8. Feature Extraction from Images
  9. Logarithmic Transform
  10. Auto-Preprocessing libraries
  11. Data Scaling and Normalization
  12. Dimensionality Reduction
  13. Handling Imbalanced Classes
  14. Handling Time-Series Data
  15. Handling Categorical Data
  16. Dimensionality Reduction
  17. Data Scaling and Normalization
  18. Encoding Categorical Variables
  19. Feature Selection
  20. Domain-Specific Feature Engineering
  21. Polynomial Features
  22. Interaction Features
  1. Unsupervised Learning
  2. Data Partitioning
  3. Blackbox Techniques
  4. Supervised Learning-Regression
  5. Supervised Learning-multiclass classification
  6. Ensemble Techniques
  7. Supervised Learning-binary classification
  8. Time Series Anaysis
  9. Forecasting
  10. Train-Test Split
  1. Regular Monitoring and Logging
  2. Data Augmentation
  3. Learning Rate Scheduling
  4. Early Stopping
  5. Train-Test Split
  6. Hyperparameter Tuning
  7. Ensemble Methods
  8. Data Partition-sequential
  9. Weight Initialization
  10. Transfer Learning
  11. Cross-Validation
  12. Batch Size Selection
  13. Batch Normalization
  14. Gradient Clipping
  15. Regularization
  1. Hyperparameter Tuning
  2. Model Comparison
  3. Model Interpretability
  4. Data Partitioning
  5. Train-Test Split
  6. Regularization Techniques
  7. Cross-Validation
  8. Performance Visualization
  9. External Validation
  10. Evaluation Metrics
  1. Model Registry
  2. Monitoring and Logging
  3. Performance Metrics
  4. Concept Drift Detection
  5. Model Versioning
  6. Serverless Computing
  7. Model Serialization
  8. Model Monitoring and Maintenance
  9. Bias and Fairness Assessment
  10. Model Drift
  11. A/B Testing
  12. Model Health Monitoring
  13. Web APIs - Flask, FastAPI, etc.
  14. Documentation and Reporting
  15. Documentation and API Documentation
  16. Streamlit
  17. Error Analysis
  18. Containerization
  19. Edge Deployment
  20. Data Drift Monitoring
  21. Continuous Integration and Deployment (CI/CD)
  22. Security Considerations
  23. Alerting and Notification
  24. Model Retraining and Updating
  25. Feedback Collection
  26. Cloud Deployment
  27. Prediction Logging
  1. Mobile
  2. End User Machine
ML Workflow Beginner - Architecture
  • Element belongs to model
  • Element not belongs to model
Feature Store

Feature Store
(Online / Offline)

Data Sources

Data Sources

Data Warehouse

Data Warehouse/ Data Lake

Data Pre Processing & Feature Engineering

EDA, Data Pre Processing & Feature Engineering

Model Selection

Model Selection

Model Training & Hyper Parameter Tuning

Model Training & Hyper Parameter Tuning

Model Evaluation

Model Evaluation

Model Deployment

Model Deployment

End User Device

End User Device

Model Registry

Model Registry