Workflow Element Store

  1. Mobile Applications or IoT Applications
  2. Public Datasets
  3. Unstructured data (Images / Videos)
  4. Data Logging
  5. Unstructured data (Audio)
  6. Surveys and Questionnaires
  7. APIs and Data Feeds
  8. Structured Data (Tabular)
  9. WebScraping
  10. Crowdsourcing
  11. Data Collaboration and Partnerships
  12. Data Generation
  13. Data Pre-existing
  1. PostgreSQL
  2. NoSQL DB
  3. MySQL
  4. Oracle DB
  5. Azure Data Warehouse
  6. RDBMS
  7. MS SQL server
  8. S3
  9. GCP BigQuery
  10. Informatica
  11. GCS
  12. Azure blob storage
  13. AWS Redshift
  1. Handling Categorical Data
  2. Domain-Specific Feature Engineering
  3. Dealing with Outliers
  4. Data Scaling and Normalization
  5. Handling Time-Series Data
  6. Binning
  7. Dimensionality Reduction
  8. Encoding Categorical Variables
  9. Feature Selection
  10. Time-Based Features
  11. Data Scaling and Normalization
  12. Handling Imbalanced Classes
  13. AutoEDA libraries
  14. Polynomial Features
  15. Textual Feature Extraction
  16. Auto-Preprocessing libraries
  17. Handling Noisy Data
  18. Dimensionality Reduction
  19. Handling Missing Data
  20. Logarithmic Transform
  21. Interaction Features
  22. Feature Extraction from Images
  1. Train-Test Split
  2. Data Partitioning
  3. Supervised Learning-multiclass classification
  4. Unsupervised Learning
  5. Time Series Anaysis
  6. Blackbox Techniques
  7. Supervised Learning-Regression
  8. Ensemble Techniques
  9. Supervised Learning-binary classification
  10. Forecasting
  1. Weight Initialization
  2. Train-Test Split
  3. Learning Rate Scheduling
  4. Data Augmentation
  5. Cross-Validation
  6. Transfer Learning
  7. Early Stopping
  8. Batch Normalization
  9. Data Partition-sequential
  10. Gradient Clipping
  11. Regularization
  12. Hyperparameter Tuning
  13. Ensemble Methods
  14. Regular Monitoring and Logging
  15. Batch Size Selection
  1. Model Comparison
  2. Hyperparameter Tuning
  3. Cross-Validation
  4. Evaluation Metrics
  5. Data Partitioning
  6. Train-Test Split
  7. External Validation
  8. Model Interpretability
  9. Regularization Techniques
  10. Performance Visualization
  1. Model Serialization
  2. Data Drift Monitoring
  3. Model Retraining and Updating
  4. Feedback Collection
  5. Documentation and API Documentation
  6. Performance Metrics
  7. Concept Drift Detection
  8. Serverless Computing
  9. Model Health Monitoring
  10. Prediction Logging
  11. Cloud Deployment
  12. Edge Deployment
  13. Documentation and Reporting
  14. Model Registry
  15. Model Monitoring and Maintenance
  16. Model Versioning
  17. Web APIs - Flask, FastAPI, etc.
  18. A/B Testing
  19. Streamlit
  20. Security Considerations
  21. Error Analysis
  22. Bias and Fairness Assessment
  23. Containerization
  24. Model Drift
  25. Continuous Integration and Deployment (CI/CD)
  26. Monitoring and Logging
  27. Alerting and Notification
  1. Mobile
  2. End User Machine
ML Workflow Beginner - Architecture
  • Element belongs to model
  • Element not belongs to model

Feature Store
(Online / Offline)

Data Sources

Data Warehouse/ Data Lake

EDA, Data Pre Processing & Feature Engineering

Model Selection

Model Training & Hyper Parameter Tuning

Model Evaluation

Model Deployment

End User Device

Model Registry