Workflow Element Store

  1. Data Logging
  2. Unstructured data (Audio)
  3. Mobile Applications or IoT Applications
  4. Unstructured data (Images / Videos)
  5. Data Pre-existing
  6. Crowdsourcing
  7. Structured Data (Tabular)
  8. WebScraping
  9. Public Datasets
  10. Data Collaboration and Partnerships
  11. APIs and Data Feeds
  12. Data Generation
  13. Surveys and Questionnaires
  1. S3
  2. MS SQL server
  3. NoSQL DB
  4. RDBMS
  5. AWS Redshift
  6. MySQL
  7. GCS
  8. Informatica
  9. Azure Data Warehouse
  10. GCP BigQuery
  11. Oracle DB
  12. PostgreSQL
  13. Azure blob storage
  1. Dimensionality Reduction
  2. Feature Extraction from Images
  3. Dimensionality Reduction
  4. Handling Imbalanced Classes
  5. Logarithmic Transform
  6. Dealing with Outliers
  7. Data Scaling and Normalization
  8. AutoEDA libraries
  9. Data Scaling and Normalization
  10. Handling Missing Data
  11. Encoding Categorical Variables
  12. Time-Based Features
  13. Auto-Preprocessing libraries
  14. Interaction Features
  15. Feature Selection
  16. Binning
  17. Handling Categorical Data
  18. Handling Time-Series Data
  19. Textual Feature Extraction
  20. Polynomial Features
  21. Domain-Specific Feature Engineering
  22. Handling Noisy Data
  1. Time Series Anaysis
  2. Ensemble Techniques
  3. Train-Test Split
  4. Forecasting
  5. Supervised Learning-binary classification
  6. Supervised Learning-Regression
  7. Unsupervised Learning
  8. Supervised Learning-multiclass classification
  9. Blackbox Techniques
  10. Data Partitioning
  1. Learning Rate Scheduling
  2. Batch Size Selection
  3. Regular Monitoring and Logging
  4. Regularization
  5. Cross-Validation
  6. Data Augmentation
  7. Weight Initialization
  8. Train-Test Split
  9. Transfer Learning
  10. Gradient Clipping
  11. Early Stopping
  12. Ensemble Methods
  13. Data Partition-sequential
  14. Batch Normalization
  15. Hyperparameter Tuning
  1. Data Partitioning
  2. Regularization Techniques
  3. Model Comparison
  4. Performance Visualization
  5. Train-Test Split
  6. Model Interpretability
  7. Cross-Validation
  8. Evaluation Metrics
  9. External Validation
  10. Hyperparameter Tuning
  1. Model Serialization
  2. Model Registry
  3. Monitoring and Logging
  4. Documentation and API Documentation
  5. Prediction Logging
  6. Documentation and Reporting
  7. Model Versioning
  8. Error Analysis
  9. Bias and Fairness Assessment
  10. Model Health Monitoring
  11. Edge Deployment
  12. A/B Testing
  13. Performance Metrics
  14. Cloud Deployment
  15. Model Drift
  16. Web APIs - Flask, FastAPI, etc.
  17. Security Considerations
  18. Continuous Integration and Deployment (CI/CD)
  19. Alerting and Notification
  20. Model Retraining and Updating
  21. Concept Drift Detection
  22. Data Drift Monitoring
  23. Streamlit
  24. Model Monitoring and Maintenance
  25. Containerization
  26. Serverless Computing
  27. Feedback Collection
  1. Mobile
  2. End User Machine
ML Workflow Beginner - Architecture
  • Element belongs to model
  • Element not belongs to model
Feature Store

Feature Store
(Online / Offline)

Data Sources

Data Sources

Data Warehouse

Data Warehouse/ Data Lake

Data Pre Processing & Feature Engineering

EDA, Data Pre Processing & Feature Engineering

Model Selection

Model Selection

Model Training & Hyper Parameter Tuning

Model Training & Hyper Parameter Tuning

Model Evaluation

Model Evaluation

Model Deployment

Model Deployment

End User Device

End User Device

Model Registry

Model Registry