Workflow Element Store

  1. WebScraping
  2. Surveys and Questionnaires
  3. Data Pre-existing
  4. Mobile Applications or IoT Applications
  5. Structured Data (Tabular)
  6. Crowdsourcing
  7. Data Logging
  8. Data Generation
  9. Public Datasets
  10. APIs and Data Feeds
  11. Unstructured data (Images / Videos)
  12. Data Collaboration and Partnerships
  13. Unstructured data (Audio)
  1. RDBMS
  2. NoSQL DB
  3. Oracle DB
  4. AWS Redshift
  5. MySQL
  6. GCP BigQuery
  7. Azure Data Warehouse
  8. MS SQL server
  9. Informatica
  10. PostgreSQL
  11. GCS
  12. Azure blob storage
  13. S3
  1. Handling Imbalanced Classes
  2. Dimensionality Reduction
  3. Handling Noisy Data
  4. Feature Extraction from Images
  5. Handling Time-Series Data
  6. AutoEDA libraries
  7. Dimensionality Reduction
  8. Auto-Preprocessing libraries
  9. Polynomial Features
  10. Textual Feature Extraction
  11. Dealing with Outliers
  12. Data Scaling and Normalization
  13. Binning
  14. Feature Selection
  15. Logarithmic Transform
  16. Encoding Categorical Variables
  17. Data Scaling and Normalization
  18. Time-Based Features
  19. Interaction Features
  20. Handling Categorical Data
  21. Handling Missing Data
  22. Domain-Specific Feature Engineering
  1. Forecasting
  2. Supervised Learning-Regression
  3. Data Partitioning
  4. Train-Test Split
  5. Ensemble Techniques
  6. Blackbox Techniques
  7. Supervised Learning-binary classification
  8. Time Series Anaysis
  9. Supervised Learning-multiclass classification
  10. Unsupervised Learning
  1. Early Stopping
  2. Batch Normalization
  3. Ensemble Methods
  4. Gradient Clipping
  5. Regular Monitoring and Logging
  6. Transfer Learning
  7. Weight Initialization
  8. Regularization
  9. Batch Size Selection
  10. Train-Test Split
  11. Hyperparameter Tuning
  12. Data Partition-sequential
  13. Data Augmentation
  14. Cross-Validation
  15. Learning Rate Scheduling
  1. Model Interpretability
  2. Performance Visualization
  3. Evaluation Metrics
  4. Model Comparison
  5. External Validation
  6. Cross-Validation
  7. Hyperparameter Tuning
  8. Train-Test Split
  9. Regularization Techniques
  10. Data Partitioning
  1. Model Retraining and Updating
  2. Model Versioning
  3. A/B Testing
  4. Alerting and Notification
  5. Performance Metrics
  6. Edge Deployment
  7. Web APIs - Flask, FastAPI, etc.
  8. Prediction Logging
  9. Continuous Integration and Deployment (CI/CD)
  10. Feedback Collection
  11. Data Drift Monitoring
  12. Documentation and API Documentation
  13. Serverless Computing
  14. Model Serialization
  15. Error Analysis
  16. Monitoring and Logging
  17. Model Registry
  18. Containerization
  19. Model Health Monitoring
  20. Streamlit
  21. Cloud Deployment
  22. Model Drift
  23. Security Considerations
  24. Documentation and Reporting
  25. Bias and Fairness Assessment
  26. Concept Drift Detection
  27. Model Monitoring and Maintenance
  1. Mobile
  2. End User Machine
ML Workflow Beginner - Architecture
  • Element belongs to model
  • Element not belongs to model
Feature Store

Feature Store
(Online / Offline)

Data Sources

Data Sources

Data Warehouse

Data Warehouse/ Data Lake

Data Pre Processing & Feature Engineering

EDA, Data Pre Processing & Feature Engineering

Model Selection

Model Selection

Model Training & Hyper Parameter Tuning

Model Training & Hyper Parameter Tuning

Model Evaluation

Model Evaluation

Model Deployment

Model Deployment

End User Device

End User Device

Model Registry

Model Registry