Workflow Element Store

  1. Unstructured data (Audio)
  2. Unstructured data (Images / Videos)
  3. Data Collaboration and Partnerships
  4. WebScraping
  5. APIs and Data Feeds
  6. Data Pre-existing
  7. Mobile Applications or IoT Applications
  8. Data Logging
  9. Structured Data (Tabular)
  10. Data Generation
  11. Crowdsourcing
  12. Surveys and Questionnaires
  13. Public Datasets
  1. RDBMS
  2. Informatica
  3. GCS
  4. PostgreSQL
  5. Azure Data Warehouse
  6. AWS Redshift
  7. NoSQL DB
  8. MS SQL server
  9. GCP BigQuery
  10. Azure blob storage
  11. Oracle DB
  12. MySQL
  13. S3
  1. Polynomial Features
  2. Interaction Features
  3. Handling Time-Series Data
  4. Handling Categorical Data
  5. Feature Extraction from Images
  6. Time-Based Features
  7. Binning
  8. AutoEDA libraries
  9. Handling Missing Data
  10. Dimensionality Reduction
  11. Data Scaling and Normalization
  12. Data Scaling and Normalization
  13. Handling Noisy Data
  14. Handling Imbalanced Classes
  15. Encoding Categorical Variables
  16. Domain-Specific Feature Engineering
  17. Dealing with Outliers
  18. Feature Selection
  19. Logarithmic Transform
  20. Auto-Preprocessing libraries
  21. Dimensionality Reduction
  22. Textual Feature Extraction
  1. Train-Test Split
  2. Unsupervised Learning
  3. Ensemble Techniques
  4. Supervised Learning-Regression
  5. Supervised Learning-binary classification
  6. Forecasting
  7. Data Partitioning
  8. Supervised Learning-multiclass classification
  9. Blackbox Techniques
  10. Time Series Anaysis
  1. Regularization
  2. Weight Initialization
  3. Cross-Validation
  4. Transfer Learning
  5. Gradient Clipping
  6. Learning Rate Scheduling
  7. Early Stopping
  8. Ensemble Methods
  9. Regular Monitoring and Logging
  10. Train-Test Split
  11. Hyperparameter Tuning
  12. Data Partition-sequential
  13. Data Augmentation
  14. Batch Normalization
  15. Batch Size Selection
  1. Evaluation Metrics
  2. Model Comparison
  3. Data Partitioning
  4. Hyperparameter Tuning
  5. Train-Test Split
  6. Cross-Validation
  7. Performance Visualization
  8. External Validation
  9. Model Interpretability
  10. Regularization Techniques
  1. Model Health Monitoring
  2. Streamlit
  3. Monitoring and Logging
  4. A/B Testing
  5. Model Serialization
  6. Model Monitoring and Maintenance
  7. Serverless Computing
  8. Model Versioning
  9. Security Considerations
  10. Data Drift Monitoring
  11. Alerting and Notification
  12. Documentation and Reporting
  13. Cloud Deployment
  14. Model Drift
  15. Continuous Integration and Deployment (CI/CD)
  16. Bias and Fairness Assessment
  17. Edge Deployment
  18. Documentation and API Documentation
  19. Containerization
  20. Performance Metrics
  21. Model Registry
  22. Feedback Collection
  23. Prediction Logging
  24. Concept Drift Detection
  25. Model Retraining and Updating
  26. Web APIs - Flask, FastAPI, etc.
  27. Error Analysis
  1. End User Machine
  2. Mobile
ML Workflow Beginner - Architecture
  • Element belongs to model
  • Element not belongs to model

Feature Store
(Online / Offline)

Data Sources

Data Warehouse/ Data Lake

EDA, Data Pre Processing & Feature Engineering

Model Selection

Model Training & Hyper Parameter Tuning

Model Evaluation

Model Deployment

End User Device

Model Registry