Certificate Course in
Foundation Program in Data Science
- 24 Hours Classroom & Online Sessions
- 40+ Hours Assignments & Real-Time Projects
- Complimentary Python and R Programming Beginners Course
3152 Learners
Academic Partners & International Accreditations
"The job requirements for data science is projected to boom from 365,000 openings to 2,721,000 in the coming years." - (Source). The USA has long been the home of technological innovation with Silicon Valley representing the pinnacle of the high tech industry. The US Department of Labor estimates (which usually tend to be highly conservative) that the employment for computer and research scientists (read Data Science professionals) will grow by 19% by the year 2026.
The USA is also a highly diverse country where a lot of cultures and subcultures merge to form a beautiful and inviting community. This offers a wide variety of cuisines to satisfy every technical palette. The US is truly a dream destination for tech aspirants and the domain of data science brings with itself one of the most exciting career paths of all times. Join the best Data Science training institute in the USA and be ready for the data revolution.
Data Science
Total Duration
3 Months
Prerequisites
- Computer Skills.
- Basic Programming Knowledge.
- Analytical Mindset.
Data Science Foundation Program Overview
The purpose of this course is to enable the students to understand the basic concepts of Data Science and how enterprises can extract insights from data. You will be introduced to the different types of data including Big Data and how to deal with each of them using Python and R. You will use data mining techniques on both structured and unstructured data. One of the highlights of this course is that it teaches you the use of machine learning algorithms to analyze big data.
What is Data Science?
Organizations collect tons of data which is most of the time underutilized and contains meaningful information. The information needs to be extracted to drive actionable insights that can be used to make critical decisions. This is where Data Science comes to our rescue and extracts actionable insights from raw data. Every experience our senses perceive is data and we see and feel its impact around us in the form of incalculable benefits in business, research, and our everyday lives. Countries today are racing to digitize all information to sift through massive lakes of data, trying to look for connections and patterns that can deliver breakthrough insights.
Data Science Course Learning Outcomes
This course in Data Science aims at laying down a strong foundation in all the concepts of data science which are domain-specific or technical. They will develop the capability to handle a deep set of core competencies in the area of programming, statistics, data analytics, machine learning, data wrangling, and data visualization. Students will be able to make use of quantitative and qualitative methods and strategies to acquire, manage, analyze, and generate insights from data. They will be able to develop the skills and techniques needed to run classification and predictive analytics over various types of data.
They will gain experience in techniques used to recognize patterns in data and establish data relationships. They will also become familiar with modern open-source programming languages and will demonstrate the ability to communicate their findings using a high level of tools to visualize data. In today’s data-rich environment, they will be able to appreciate the various data analytics tasks which include extraction, cleaning, prediction, and interpretation of data. This course focuses on both practical and technical perspectives where students will get an opportunity to gain hands-on experience of working with real data using R and Python. So, if you have a passion for discovering answers through data analysis then join this foundation course in Data Science and earn a certification that will help you to accelerate your career growth. You will also
Block Your Time
24 hours
Classroom & Online Sessions
40 hours
Assignments & Real-Time Projects
20 hours
Real-Time Industry Projects
Who Should Sign Up?
- IT Engineers
- Data and Analytics Manager
- Business Analysts
- Data Engineers
- Banking and Finance Analysts
- Marketing Managers
- Supply Chain Professionals
- HR Managers
- Math, Science and Commerce Graduates
Modules for Fundamentals of Data Science Course
This module covers all aspects of data science including data manipulation, visualization, foundational knowledge in probability and statistics, preprocessing using modern tools along with the theoretical and practical aspects of predictive analytics algorithms. The modules have been designed to convey the skills required for using open-source tools to run data analytics. They will also run you through the basic principles needed to study and interpret data and teach you to put across your findings effectively through written and oral reports. Students will be able to identify and develop the ability to evaluate, integrate, and apply the appropriate skills required to design models for prediction using ML algorithms.
This module introduces the popular programming languages- R and Python. They are used in Statistics, Machine Learning and Data Science. We will see the programming paradigms, similarities, and differences between both languages. It will also familiarize the users with some of the important data structures of each language.
This module introduces the participants to the basic statistical foundations that every analyst is expected to know. Learners will be introduced to the concepts of Random Variables, Probability Distributions, First, Second, Third and Fourth moments of a Probability Distribution Function and other summary and Descriptive Statistics.
This module deals with various concepts of the Predictive Analytics Domain and introduces some of the fundamental heuristics. We learn about Confidence Intervals, Predictive Power, and Power of a test.
This module will talk about hypothesis testing which is a very common technique in deciding whether a process needs to be changed or not. This will be done using various tests for two or more distributions (ANOVA).
This module briefly describes the overall life cycle of a Data Analytics project. The framework relies heavily on the Cross-Industry Standard Process for Data Mining (CRISP-DM) methodology which was developed while dealing with such tasks. All the lifecycle stages from business problem formulation to model deployment are discussed in detail.
This module introduces a major paradigm of Machine Learning - Supervised Learning. As the name suggests, the goal of this particular approach is to use labeled historical data and learn patterns and make predictions on future data.
This module describes the other major paradigm of Machine Learning - Unsupervised Learning. This is different from the approach previously discussed as there is no labeled data in here. The approaches try to learn from the data and group them into Clusters or Segments or reduce the dimensions based on some heuristic.
Tools Covered
Data Science Foundation Course Trends in USA
The massive amount of data generated every day is partly because of the rise in IoT or sensor-driven devices which are creating several new trends in the field of Data Science. Given the rapid adoption of cloud and IoT technologies, the roles in Data Science will grow to include machine learning (ML) and big data technology skills. Enterprises will demand more from their “wizards of all business solutions’’ and the demand for Data Science roles like data engineers, data analysts, and data developers will reach the mark of 750,000 by 2021. Now let’s look into the other trends that will hit the market which includes Widespread Automation in Data Science which will be a blend of multiple ML applications and other technology platforms. Mobilization of AI and ML into the mainstream across all business analytics platforms will push the evolution of Big Data in AI-Ready Data Landscape.
The need for real-time analytics will drive the need for in-memory processing that can respond immediately to online sales activities or unexpected developments in financial markets and portfolios. We will see a large-scale development in the space of Natural-language processing where natural language recognition, interpretation, and mechanics are going to reach the next level and where more analytics queries will be placed by voice command. We will also see the growing concern for protection and security of data which will encourage Data protection by design that will ensure the protection of data is taken care of during the design phase of any system, service, product, or process and also throughout the lifecycle. With Artificial intelligence and Machine Learning leading the way and impacting all aspects of business operations, the demand for finding the talent with the desired skill will be on the rise. So, join this course in Data Science and you will be on your way to joining this lucrative and exciting career.
How We Prepare You
- Additional Assignments of over 60-80 hours
- Live Free Webinars
- Resume and LinkedIn Review Sessions
- 3 Month Access to LMS
- 24/7 Support
- Job Assistance in Data Science Fields
- Complimentary Courses
- Unlimited Mock Interview and Quiz Session
- Hands-on Experience in a Live Project
- Life Time Free access to Industry Webinars
Call us Today!
Certificate
Earn a certificate and demonstrate your commitment to the profession. Use it to distinguish yourself in the job market, get
Recommended Programmes
Foundation Program In Data Science
3152 Learners
Certification Program in Big Data
5093 Learners
Certificate Course in AI & Deep Learning
2093 Learners
Alumni Speak
"The training was organised properly, and our instructor was extremely conceptually sound. I enjoyed the interview preparation, and 360DigiTMG is to credit for my successful placement.”
Pavan Satya
Senior Software Engineer
"Although data sciences is a complex field, the course made it seem quite straightforward to me. This course's readings and tests were fantastic. This teacher was really beneficial. This university offers a wealth of information."
Chetan Reddy
Data Scientist
"The course's material and infrastructure are reliable. The majority of the time, they keep an eye on us. They actually assisted me in getting a job. I appreciated their help with placement. Excellent institution.”
Santosh Kumar
Business Intelligence Analyst
"Numerous advantages of the course. Thank you especially to my mentors. It feels wonderful to finally get to work.”
Kadar Nagole
Data Scientist
"Excellent team and a good atmosphere. They truly did lead the way for me right away. My mentors are wonderful. The training materials are top-notch.”
Gowtham R
Data Engineer
"The instructors improved the sessions' interactivity and communicated well. The course has been fantastic.”
Wan Muhamad Taufik
Associate Data Scientist
"The instructors went above and beyond to allay our fears. They assigned us an enormous amount of work, including one very difficult live project. great location for studying.”
Venu Panjarla
AVP Technology
Our Alumni Work At
And more...
FAQs for Foundation Programme in Data Science
The entire course is lab-based. The class is a mixture of theory along with hands-on exercises.
R and Python are open source programming languages in pursuit of robust Data Science. Both languages can be used for Big Data Analytics Python is a general-purpose programming language whereas R language was developed for statisticians. It is advised that a Data Scientist should learn both Python and R language so that strengths of both complement each other while handling complex Big Data. Both are useful for Data Mining.
Data Scientist training can be taken from all sectors and people from all experiences. The foundation program in Data Science will help you update your skills for an exciting Data Scientist career. You can also become a Data Engineer. You bring in the Industry experience, which will give you an idea on what a Data Scientist needs to achieve and how to build strategies keeping in mind the business end goals.
To become a successful data scientist, one should have a basic understanding of mathematics, statistics & probability. However, 360DigiTMG provides all the basic introductory learning on Probability and Statistics that will help you prepare the foundation.
Our faculty are industry experts with around 15+ years of experience. Our trainers work on real- time projects with various clients and bring that experience into their teaching methodology. This way students get rich real-time exposure on the trending concepts in the industry today.
Data Science is the sexiest job of the 21st century. Companies worldwide are putting all efforts to analyze their data and are falling short of quality resources. All the job portals have many data science positions open worldwide to fill in these shortages.
All the sessions are recorded and available to revisit in our AI-Powered LMS AISPRY . You will have access to the LMS for a period of 3 months. The access can be extended on a need basis.
The most popular tools in Data Science field including R and Python will be covered in this Foundation Program on Data Science. Additionally, you are welcome to attend our introductory course in Tableau
Each student is assigned a mentor during the course of this program. If the mentor feels that additional support is needed to help the student, we may refer you to another trainer or mentor.
Jobs in the Field of Data Science in USA
Data science is shaping our future and driving a rise in employment opportunities across various industries. The three big roles that you can take up in this field are of a Data Scientist, Data Analyst, and Data Engineer.
Salaries for Data Science In USA
The average salary for a Data Scientist is $118,309 in the United States. A data scientist with 0-2 years of experience is $96,000 and a mid-level data scientist salary is close to $125,950, and an experienced data scientist’s salary is as high as $260,000.
Data Science Projects in USA
Developing an innovative chat and voice bot, detecting fake news with Python, anomaly detection, Uber Data Analysis in R, and Gender and Age Detection are some projects students can take up to strengthen their resume.
Role of Open Source Tools in Data Science
The various open-source tools in data science help to extract, collect, store, and analyze information. They help in the process of Data mining, classification, association, regression, and clustering. The tools covered in this course are R, Python. and RStudio.
Modes of Training of Data Science Course
The course in the USA is designed to suit the needs of students as well as working professionals. We at 360DigiTMG give our students the option of both classroom and online learning. We also support e-learning as part of our curriculum.
Industry Applications of Data Science in USA
Data science today has become the backbone of almost all the industries that are data-driven. The industries that are reaping the benefits of data science include finance, healthcare, manufacturing, travel, Pharmaceuticals, energy, etc. the list is endless.
Companies That Trust Us
360DigiTMG offers customised corporate training programmes that suit the industry-specific needs of each company. Engage with us to design continuous learning programmes and skill development roadmaps for your employees. Together, let’s create a future-ready workforce that will enhance the competitiveness of your business.
Student Voices