Home / ML on Cloud / Machine Learning on AWS Cloud

Certificate Course in

Machine Learning on AWS Cloud

Employ AWS EC2, AWS S3, and AWS RDS to seamlessly store and transfer organization’s data to and from AWS Cloud.
  • 24 Hours Classroom & Online Sessions
  • 80 Hours Assignments & Real-Time Projects
  • Aligned with AWS Certified Machine Learning
  • Complimentary Python Programming
  • Complimentary Machine Learning Primer
machine learning on aws course reviews - 360digitmg
593 Reviews
machine learning on aws course reviews - 360digitmg
4071 Learners
Academic Partners & International Accreditations
  • Digital Marketing with Microsoft
  • Digital Marketing course with Nasscome
  • Digital Marketing course with utm certificate
  • Digital Marketing course
  • Digital Marketing course with panasonic certificate

"Companies that adopt cloud services experience a 20.5% average improvement in time to market. 80% of all enterprises will move to the cloud by 2025." - (Source). Amazon Web Services is a cloud service platform that offers flexibility and scalability to deploy services and manage data for organizations of all sizes. AWS provides the broadest and deepest set of machine learning services that fit your business needs and help unlock new insights and value. It also provides visualization tools and services that help developers build, train, and deploy machine learning models without having to learn complex machine learning algorithms and technology. In this course, learn to use AWS Machine Learning tools and services to make smart business decisions.

ML on AWS Cloud

machine learning on aws course duration - 360digitmg

Total Duration

2.5 Months

machine learning on aws course pre-requisites - 360digitmg


  • Computer Skills.
  • Basic Mathematical Knowledge.
  • Basic Data Science Concepts.

AWS Machine Learning Programme Overview

Learn to use the AWS Cloud platform to scale your business growth. Employ AWS EC2, AWS S3, and AWS RDS to seamlessly store and transfer organization data to and from AWS Cloud. Build, train, and deploy AWS Deep Learning models with Machine Learning on AWS Cloud. This program begins with an introduction to cloud computing and the evolution of Amazon Web Services(AWS). The rudiments of Elastic Cloud Compute (EC2), features of EC2, and types of instances of AWS EC2 are imparted to the student. Data Storage with Simple Storage Services (S3), concepts of creating S3 bucket, storage classes, versioning, static website hosting, and cross-region replication of data through S3 are elaborated in detail. Learn about AWS Relational Database Service (RDS), deploying RDS instances, and much more. Apprehend Machine Learning using Amazon Sage maker and NLP and Text Mining using Amazon Comprehend. Build Prediction Models using Machine Learning Services.


Amazon Machine Learning allows a developer to discover hidden patterns in the data through algorithms, construct models, and implement predictive applications based on these patterns. AWS allows developers to build models according to the specified needs of the organization and helps make better business decisions. These models make a prediction based on probability and allow us to test thousands of potential product designs, improve health care outcomes, and enhance customer service responses. AWS provides many benefits like Security, where data is encrypted to provide end-to-end security. Flexibility, where developers can select the operating system language and database. Usability, where it quickly deploys applications, builds new apps and migrates existing ones. Last but least Scalability, where developers can scale up or down as needed.

Machine Learning on AWS Learning Outcomes

Machine Learning is about making predictions using simple statistical methods, algorithms, and modern computing power. AWS is designed to securely host your applications and enables you to select the operating system, programming language, and other services you need and pay only for the computing power, storage, and services you use. With Amazon ML one can build data from large data sets, make predictions that are used to solve real-time problems. This course introduces you to the Machine Learning concepts and terminologies, how to create and use machine learning models, how to evaluate that model's performance, and what problems can machine learning solve. Students will learn to build, train, tune, and deploy ML models using the AWS Cloud. Using the Machine Learning web service offered by Amazon you will learn to work with data sources and generate accurate predictions. Explore real-world use cases with Machine Learning (ML) and using Amazon Sage Maker which enables Data Scientists and developers to easily deploy your ML use cases and removes the complexity from each step of the ML workflow also discover common neural network frameworks with Amazon Sage Maker.

Cloud technology and its advantages
Various Machine Learning services offered on AWS
Understand how data is loaded on to cloud storage services
Build predictive models using Amazon Machine Learning services
Connecting Amazon database services and transforming data
Understand how to deploy a model on cloud

Block Your Time

machine learning on aws course - 360digitmg

24 hours

Classroom Sessions.

machine learning on aws course - 360digitmg

40 hours

Assignments &

machine learning on aws course - 360digitmg

40 hours

Live Projects.

Who Should Sign Up?

  • Data scientists, technology heads, decision-makers.
  • Professionals with analytics knowledge.
  • Professionals with industry domain experience in various areas (banking, finance, insurance, mechanical, IoT etc.).

Machine Learning on Cloud Modules

AWS Machine Learning algorithm quickly helps to build smart applications that are used to detect fraud, predict demand, and synchronizes the previous data to provide vital information to the user. The module on Machine Learning on AWS Cloud fulfills the objective of getting familiar with Amazon services and machine learning. Each of the modules will take you through several ML concepts, AWS services, and the challenges Machine Learning can address and ultimately help solve. The first module introduces you to cloud computing and its advantages and then you will be given a brief introduction to AWS and its features like storage, security, flexibility, and scalability. You will also learn how to make use of Amazon Sage Maker which is used to easily integrate Machine Learning into your applications.

Introduction to Cloud Computing and its concepts. Understand various advantages of Cloud Computing, the various Cloud deployment Models, and the various Service Models.

Introduction to Amazon Web Services, its history, AWS milestones, Amazon Web Services standing in the Cloud market, AWS Global Infrastructure, Regions, Availability Zones, and Edge Locations.

Introduction to EC2 and its services. Creating an EC2 Instance. Classification of EC2 Instances based on Configuration, Performance, and Memory. Learn about On-Demand Instances, Reserved Instances, Scheduled Instances, and Spot Instances. In this module, you will study the use of Load Balancers, Elastic Block Storage - Volumes and Snapshots, dealing with AMI and creating Custom AMI.

Introduction to various types of Storage Services - EBS, S3 and EFS, differences between these storage services. In this module, you will learn to use S3 services for Machine Learning. You will learn about the properties of S3 and storage classes in S3.

AWS best practices in securing your Amazon Web Services Account, controlling other Users, Groups, in AWS Account through AWS Policies. Study the importance of the IAM Role. Learn to create Custom Policies and enable Multi-Factor Authentication.

Studying Amazon RDS Services, creating an RDS Instance and its characteristics, creating MYSQL RDS service and establishing a connection with Remote EC2 Instance.

Introduction to Machine Learning on Cloud, Amazon SageMaker and its characteristics, various services under Amazon SageMaker, creating a Notebook Instance, and launching Jupyter Notebook.

Introduction to Text Mining and Natural Language Processing, Uploading the extracted data in Amazon Comprehend and performing Sentiment Analysis.

Introduction to Amazon Machine Learning Service. Learn how Machine Learning Service builds a Machine Learning Model based on the inputs provided.

How We Prepare You
  • Machine Learning on AWS course with placements
    Additional Assignments of over 80+ hours
  • Machine Learning on AWS course with placements training
    Live Free Webinars
  • Machine Learning on AWS training institute with placements
    Resume and LinkedIn Review Sessions
  • Machine Learning on AWS course with certification
    LMS Access for 6 Months
  • Machine Learning on AWS certification with USP
    Job Placements in Machine Learning on AWS Fields
  • best Machine Learning on AWS course with USP
    Complimentary Courses
  • best Machine Learning on AWS course with USP
    Unlimited Mock Interview and Quiz Session
  • best Machine Learning on AWS training with placements
    Hands-on Experience in Live Projects
  • Machine Learning on AWS course
    Life Time Free Access to Industry Webinars

Call us Today!

Limited seats available. Book now

Make an Enquiry
Call Us